Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
JAMA Netw Open ; 6(2): e2255795, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2238343

ABSTRACT

Importance: Individuals who survived COVID-19 often report persistent symptoms, disabilities, and financial consequences. However, national longitudinal estimates of symptom burden remain limited. Objective: To measure the incidence and changes over time in symptoms, disability, and financial status after COVID-19-related hospitalization. Design, Setting, and Participants: A national US multicenter prospective cohort study with 1-, 3-, and 6-month postdischarge visits was conducted at 44 sites participating in the National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Network's Biology and Longitudinal Epidemiology: COVID-19 Observational (BLUE CORAL) study. Participants included hospitalized English- or Spanish-speaking adults without severe prehospitalization disabilities or cognitive impairment. Participants were enrolled between August 24, 2020, and July 20, 2021, with follow-up occurring through March 30, 2022. Exposure: Hospitalization for COVID-19 as identified with a positive SARS-CoV-2 molecular test. Main Outcomes and Measures: New or worsened cardiopulmonary symptoms, financial problems, functional impairments, perceived return to baseline health, and quality of life. Logistic regression was used to identify factors associated with new cardiopulmonary symptoms or financial problems at 6 months. Results: A total of 825 adults (444 [54.0%] were male, and 379 [46.0%] were female) met eligibility criteria and completed at least 1 follow-up survey. Median age was 56 (IQR, 43-66) years; 253 (30.7%) participants were Hispanic, 145 (17.6%) were non-Hispanic Black, and 360 (43.6%) were non-Hispanic White. Symptoms, disabilities, and financial problems remained highly prevalent among hospitalization survivors at month 6. Rates increased between months 1 and 6 for cardiopulmonary symptoms (from 67.3% to 75.4%; P = .001) and fatigue (from 40.7% to 50.8%; P < .001). Decreases were noted over the same interval for prevalent financial problems (from 66.1% to 56.4%; P < .001) and functional limitations (from 55.3% to 47.3%; P = .004). Participants not reporting problems at month 1 often reported new symptoms (60.0%), financial problems (23.7%), disabilities (23.8%), or fatigue (41.4%) at month 6. Conclusions and Relevance: The findings of this cohort study of people discharged after COVID-19 hospitalization suggest that recovery in symptoms, functional status, and fatigue was limited at 6 months, and some participants reported new problems 6 months after hospital discharge.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/epidemiology , SARS-CoV-2 , Cohort Studies , Prospective Studies , Quality of Life , Aftercare , Patient Discharge
2.
J Clin Med ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2230104

ABSTRACT

BACKGROUND: A growing number of Coronavirus Disease-2019 (COVID-19) survivors are affected by post-acute sequelae of SARS CoV-2 infection (PACS). Using electronic health record data, we aimed to characterize PASC-associated diagnoses and develop risk prediction models. METHODS: In our cohort of 63,675 patients with a history of COVID-19, 1724 (2.7%) had a recorded PASC diagnosis. We used a case-control study design and phenome-wide scans to characterize PASC-associated phenotypes of the pre-, acute-, and post-COVID-19 periods. We also integrated PASC-associated phenotypes into phenotype risk scores (PheRSs) and evaluated their predictive performance. RESULTS: In the post-COVID-19 period, known PASC symptoms (e.g., shortness of breath, malaise/fatigue) and musculoskeletal, infectious, and digestive disorders were enriched among PASC cases. We found seven phenotypes in the pre-COVID-19 period (e.g., irritable bowel syndrome, concussion, nausea/vomiting) and sixty-nine phenotypes in the acute-COVID-19 period (predominantly respiratory, circulatory, neurological) associated with PASC. The derived pre- and acute-COVID-19 PheRSs stratified risk well, e.g., the combined PheRSs identified a quarter of the cohort with a history of COVID-19 with a 3.5-fold increased risk (95% CI: 2.19, 5.55) for PASC compared to the bottom 50%. CONCLUSIONS: The uncovered PASC-associated diagnoses across categories highlighted a complex arrangement of presenting and likely predisposing features, some with potential for risk stratification approaches.

3.
Medicine (Baltimore) ; 101(46): e31248, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2135736

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its long-term outcomes may be jointly caused by a wide range of clinical, social, and economic characteristics. Studies aiming to identify mechanisms for SARS-CoV-2 morbidity and mortality must measure and account for these characteristics to arrive at unbiased, accurate conclusions. We sought to inform the design, measurement, and analysis of longitudinal studies of long-term outcomes among people infected with SARS-CoV-2. We fielded a survey to an interprofessional group of clinicians and scientists to identify factors associated with SARS-CoV-2 infection and subsequent outcomes. Using an iterative process, we refined the resulting list of factors into a consensus causal diagram relating infection and 12-month mortality. Finally, we operationalized concepts from the causal diagram into minimally sufficient adjustment sets using common medical record data elements. Total 31 investigators identified 49 potential risk factors for and 72 potential consequences of SARS-CoV-2 infection. Risk factors for infection with SARS-CoV-2 were grouped into five domains: demographics, physical health, mental health, personal social, and economic factors, and external social and economic factors. Consequences of coronavirus disease 2019 (COVID-19) were grouped into clinical consequences, social consequences, and economic consequences. Risk factors for SARS-CoV-2 infection were developed into a consensus directed acyclic graph for mortality that included two minimally sufficient adjustment sets. We present a collectively developed and iteratively refined list of data elements for observational research in SARS-CoV-2 infection and disease. By accounting for these elements, studies aimed at identifying causal pathways for long-term outcomes of SARS-CoV-2 infection can be made more informative.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Consensus , SARS-CoV-2
4.
Am J Crit Care ; 31(2): 146-157, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1737135

ABSTRACT

BACKGROUND: Understanding COVID-19 epidemiology is crucial to clinical care and to clinical trial design and interpretation. OBJECTIVE: To describe characteristics, treatment, and outcomes among patients hospitalized with COVID-19 early in the pandemic. METHODS: A retrospective cohort study of consecutive adult patients with laboratory-confirmed, symptomatic SARS-CoV-2 infection admitted to 57 US hospitals from March 1 to April 1, 2020. RESULTS: Of 1480 inpatients with COVID-19, median (IQR) age was 62.0 (49.4-72.9) years, 649 (43.9%) were female, and 822 of 1338 (61.4%) were non-White or Hispanic/Latino. Intensive care unit admission occurred in 575 patients (38.9%), mostly within 4 days of hospital presentation. Respiratory failure affected 583 patients (39.4%), including 284 (19.2%) within 24 hours of hospital presentation and 413 (27.9%) who received invasive mechanical ventilation. Median (IQR) hospital stay was 8 (5-15) days overall and 15 (9-24) days among intensive care unit patients. Hospital mortality was 17.7% (n = 262). Risk factors for hospital death identified by penalized multivariable regression included older age; male sex; comorbidity burden; symptoms-to-admission interval; hypotension; hypoxemia; and higher white blood cell count, creatinine level, respiratory rate, and heart rate. Of 1218 survivors, 221 (18.1%) required new respiratory support at discharge and 259 of 1153 (22.5%) admitted from home required new health care services. CONCLUSIONS: In a geographically diverse early-pandemic COVID-19 cohort with complete hospital folllow-up, hospital mortality was associated with older age, comorbidity burden, and male sex. Intensive care unit admissions occurred early and were associated with protracted hospital stays. Survivors often required new health care services or respiratory support at discharge.


Subject(s)
COVID-19 , Aged , COVID-19/therapy , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
5.
J Intensive Care Med ; 37(4): 500-509, 2022 04.
Article in English | MEDLINE | ID: covidwho-1582678

ABSTRACT

OBJECTIVE: To determine whether surge conditions were associated with increased mortality. DESIGN: Multicenter cohort study. SETTING: U.S. ICUs participating in STOP-COVID. PATIENTS: Consecutive adults with COVID-19 admitted to participating ICUs between March 4 and July 1, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The main outcome was 28-day in-hospital mortality. To assess the association between admission to an ICU during a surge period and mortality, we used two different strategies: (1) an inverse probability weighted difference-in-differences model limited to appropriately matched surge and non-surge patients and (2) a meta-regression of 50 multivariable difference-in-differences models (each based on sets of randomly matched surge- and non-surge hospitals). In the first analysis, we considered a single surge period for the cohort (March 23 - May 6). In the second, each surge hospital had its own surge period (which was compared to the same time periods in matched non-surge hospitals).Our cohort consisted of 4342 ICU patients (average age 60.8 [sd 14.8], 63.5% men) in 53 U.S. hospitals. Of these, 13 hospitals encountered surge conditions. In analysis 1, the increase in mortality seen during surge was not statistically significant (odds ratio [95% CI]: 1.30 [0.47-3.58], p = .6). In analysis 2, surge was associated with an increased odds of death (odds ratio 1.39 [95% CI, 1.34-1.43], p < .001). CONCLUSIONS: Admission to an ICU with COVID-19 in a hospital that is experiencing surge conditions may be associated with an increased odds of death. Given the high incidence of COVID-19, such increases would translate into substantial excess mortality.


Subject(s)
COVID-19 , Critical Illness , Adult , Cohort Studies , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , SARS-CoV-2
6.
J Hosp Med ; 2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-1369934

ABSTRACT

BACKGROUND: Patients discharged after COVID-19 report ongoing needs. OBJECTIVES: To measure incident symptoms after COVID-19 hospitalization. DESIGN, SETTING, AND PARTICIPANTS: Preplanned early look at 1-month follow-up surveys from patients hospitalized August 2020 to January 2021 in NHLBI PETAL Network's Biology and Longitudinal Epidemiology: COVID-19 Observational (BLUE CORAL) study. English- or Spanish-speaking hospitalized adults without substantial pre-COVID-19 disability with a positive molecular test for SARS-CoV-2. RESULTS: Overall, 253 patients were hospitalized for a median of 5 days (interquartile range [IQR], 3-8), and had a median age of 60 years (IQR, 45-68). By race/ethnicity, 136 (53.8%) were non-Hispanic White, 23 (9.1%) were non-Hispanic Black, and 83 (32.8%) were Hispanic. Most (139 [54.9%]) reported a new or worsened cardiopulmonary symptom, and 16% (n = 39) reported new or increased oxygen use; 213 (84.2%) patients reported not feeling fully back to their pre-COVID-19 level of functioning. New limitations in activities of daily living were present in 130 (52.8%) patients. Financial toxicities, including job loss or change (49 [19.8%]), having a loved one take time off (93 [37.8%]), and using up one's savings (58 [23.2%]), were common. Longer lengths of hospital stay were associated with greater odds of 1-month cardiopulmonary symptoms (adjusted odds ratio [aOR], 1.82 per additional week in the hospital; 95% CI, 1.11-2.98) and new disability (aOR, 2.06; 95% CI, 1.21-3.53). There were not uniform demographic patterns of association. LIMITATIONS: We prioritized patients' reports of their own incident problems over objective testing. CONCLUSION: Patients who survived COVID-19 in the United States during late 2020/early 2021 still faced new burdens 1 month after hospital discharge.

7.
JMIR Med Inform ; 9(4): e25066, 2021 Apr 21.
Article in English | MEDLINE | ID: covidwho-1200031

ABSTRACT

BACKGROUND: COVID-19 has led to an unprecedented strain on health care facilities across the United States. Accurately identifying patients at an increased risk of deterioration may help hospitals manage their resources while improving the quality of patient care. Here, we present the results of an analytical model, Predicting Intensive Care Transfers and Other Unforeseen Events (PICTURE), to identify patients at high risk for imminent intensive care unit transfer, respiratory failure, or death, with the intention to improve the prediction of deterioration due to COVID-19. OBJECTIVE: This study aims to validate the PICTURE model's ability to predict unexpected deterioration in general ward and COVID-19 patients, and to compare its performance with the Epic Deterioration Index (EDI), an existing model that has recently been assessed for use in patients with COVID-19. METHODS: The PICTURE model was trained and validated on a cohort of hospitalized non-COVID-19 patients using electronic health record data from 2014 to 2018. It was then applied to two holdout test sets: non-COVID-19 patients from 2019 and patients testing positive for COVID-19 in 2020. PICTURE results were aligned to EDI and NEWS scores for head-to-head comparison via area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve. We compared the models' ability to predict an adverse event (defined as intensive care unit transfer, mechanical ventilation use, or death). Shapley values were used to provide explanations for PICTURE predictions. RESULTS: In non-COVID-19 general ward patients, PICTURE achieved an AUROC of 0.819 (95% CI 0.805-0.834) per observation, compared to the EDI's AUROC of 0.763 (95% CI 0.746-0.781; n=21,740; P<.001). In patients testing positive for COVID-19, PICTURE again outperformed the EDI with an AUROC of 0.849 (95% CI 0.820-0.878) compared to the EDI's AUROC of 0.803 (95% CI 0.772-0.838; n=607; P<.001). The most important variables influencing PICTURE predictions in the COVID-19 cohort were a rapid respiratory rate, a high level of oxygen support, low oxygen saturation, and impaired mental status (Glasgow Coma Scale). CONCLUSIONS: The PICTURE model is more accurate in predicting adverse patient outcomes for both general ward patients and COVID-19 positive patients in our cohorts compared to the EDI. The ability to consistently anticipate these events may be especially valuable when considering potential incipient waves of COVID-19 infections. The generalizability of the model will require testing in other health care systems for validation.

8.
Chest ; 160(2): 519-528, 2021 08.
Article in English | MEDLINE | ID: covidwho-1126776

ABSTRACT

BACKGROUND: The COVID-19 pandemic placed considerable strain on critical care resources. How US hospitals responded to this crisis is unknown. RESEARCH QUESTION: What actions did US hospitals take to prepare for a potential surge in demand for critical care services in the context of the COVID-19 pandemic? STUDY DESIGN AND METHODS: From September to November 2020, the chief nursing officers of a representative sample of US hospitals were surveyed regarding organizational actions taken to increase or maintain critical care capacity during the COVID-19 pandemic. Weighted proportions of hospitals for each potential action were calculated to create estimates across the entire population of US hospitals, accounting for both the sampling strategy and nonresponse. Also examined was whether the types of actions taken varied according to the cumulative regional incidence of COVID-19 cases. RESULTS: Responses were received from 169 of 540 surveyed US hospitals (response rate, 31.3%). Almost all hospitals canceled or postponed elective surgeries (96.7%) and nonsurgical procedures (94.8%). Few hospitals created new medical units in areas not typically dedicated to health care (12.9%), and almost none adopted triage protocols (5.6%) or protocols to connect multiple patients to a single ventilator (4.8%). Actions to increase or preserve ICU staff, including use of ICU telemedicine, were highly variable, without any single dominant strategy. Hospitals experiencing a higher incidence of COVID-19 did not consistently take different actions compared with hospitals facing lower incidence. INTERPRETATION: Responses of hospitals to the mass need for critical care services due to the COVID-19 pandemic were highly variable. Most hospitals canceled procedures to preserve ICU capacity and scaled up ICU capacity using existing clinical space and staffing. Future research linking hospital response to patient outcomes can inform planning for additional surges of this pandemic or other events in the future.


Subject(s)
COVID-19 , Critical Care/organization & administration , Hospital Administration , Surge Capacity/organization & administration , COVID-19/epidemiology , Cross-Sectional Studies , Health Care Surveys , Humans , United States/epidemiology
9.
Ann Am Thorac Soc ; 18(11): 1876-1885, 2021 11.
Article in English | MEDLINE | ID: covidwho-1084007

ABSTRACT

Rationale: Patients with severe coronavirus disease (COVID-19) meet clinical criteria for the acute respiratory distress syndrome (ARDS), yet early reports suggested they differ physiologically and clinically from patients with non-COVID-19 ARDS, prompting treatment recommendations that deviate from standard evidence-based practices for ARDS. Objectives: To compare respiratory physiology, clinical outcomes, and extrapulmonary clinical features of severe COVID-19 with non-COVID-19 ARDS. Methods: We performed a retrospective cohort study, comparing 130 consecutive mechanically ventilated patients with severe COVID-19 with 382 consecutive mechanically ventilated patients with non-COVID-19 ARDS. Initial respiratory physiology and 28-day outcomes were compared. Extrapulmonary manifestations (inflammation, extrapulmonary organ injury, and coagulation) were compared in an exploratory analysis. Results: Comparison of patients with COVID-19 and non-COVID-19 ARDS suggested small differences in respiratory compliance, ventilatory efficiency, and oxygenation. The 28-day mortality was 30% in patients with COVID-19 and 38% in patients with non-COVID-19 ARDS. In adjusted analysis, point estimates of differences in time to breathing unassisted at 28 days (adjusted subdistributional hazards ratio, 0.98 [95% confidence interval (CI), 0.77-1.26]) and 28-day mortality (risk ratio, 1.01 [95% CI, 0.72-1.42]) were small for COVID-19 versus non-COVID-19 ARDS, although the confidence intervals for these estimates include moderate differences. Patients with COVID-19 had lower neutrophil counts but did not differ in lymphocyte count or other measures of systemic inflammation. Conclusions: In this single-center cohort, we found no evidence for large differences between COVID-19 and non-COVID-19 ARDS. Many key clinical features of severe COVID-19 were similar to those of non-COVID-19 ARDS, including respiratory physiology and clinical outcomes, although our sample size precludes definitive conclusions. Further studies are needed to define COVID-19-specific pathophysiology before a deviation from evidence-based treatment practices can be recommended.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2
10.
Intensive Care Med ; 47(2): 208-221, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060219

ABSTRACT

PURPOSE: Limited data are available on venovenous extracorporeal membrane oxygenation (ECMO) in patients with severe hypoxemic respiratory failure from coronavirus disease 2019 (COVID-19). METHODS: We examined the clinical features and outcomes of 190 patients treated with ECMO within 14 days of ICU admission, using data from a multicenter cohort study of 5122 critically ill adults with COVID-19 admitted to 68 hospitals across the United States. To estimate the effect of ECMO on mortality, we emulated a target trial of ECMO receipt versus no ECMO receipt within 7 days of ICU admission among mechanically ventilated patients with severe hypoxemia (PaO2/FiO2 < 100). Patients were followed until hospital discharge, death, or a minimum of 60 days. We adjusted for confounding using a multivariable Cox model. RESULTS: Among the 190 patients treated with ECMO, the median age was 49 years (IQR 41-58), 137 (72.1%) were men, and the median PaO2/FiO2 prior to ECMO initiation was 72 (IQR 61-90). At 60 days, 63 patients (33.2%) had died, 94 (49.5%) were discharged, and 33 (17.4%) remained hospitalized. Among the 1297 patients eligible for the target trial emulation, 45 of the 130 (34.6%) who received ECMO died, and 553 of the 1167 (47.4%) who did not receive ECMO died. In the primary analysis, patients who received ECMO had lower mortality than those who did not (HR 0.55; 95% CI 0.41-0.74). Results were similar in a secondary analysis limited to patients with PaO2/FiO2 < 80 (HR 0.55; 95% CI 0.40-0.77). CONCLUSION: In select patients with severe respiratory failure from COVID-19, ECMO may reduce mortality.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome/therapy , Adult , COVID-19/complications , Cohort Studies , Female , Humans , Male , Middle Aged , Respiratory Distress Syndrome/virology , Treatment Outcome
11.
Ann Intern Med ; 174(5): 622-632, 2021 05.
Article in English | MEDLINE | ID: covidwho-1049179

ABSTRACT

BACKGROUND: Hypercoagulability may be a key mechanism of death in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: To evaluate the incidence of venous thromboembolism (VTE) and major bleeding in critically ill patients with COVID-19 and examine the observational effect of early therapeutic anticoagulation on survival. DESIGN: In a multicenter cohort study of 3239 critically ill adults with COVID-19, the incidence of VTE and major bleeding within 14 days after intensive care unit (ICU) admission was evaluated. A target trial emulation in which patients were categorized according to receipt or no receipt of therapeutic anticoagulation in the first 2 days of ICU admission was done to examine the observational effect of early therapeutic anticoagulation on survival. A Cox model with inverse probability weighting to adjust for confounding was used. SETTING: 67 hospitals in the United States. PARTICIPANTS: Adults with COVID-19 admitted to a participating ICU. MEASUREMENTS: Time to death, censored at hospital discharge, or date of last follow-up. RESULTS: Among the 3239 patients included, the median age was 61 years (interquartile range, 53 to 71 years), and 2088 (64.5%) were men. A total of 204 patients (6.3%) developed VTE, and 90 patients (2.8%) developed a major bleeding event. Independent predictors of VTE were male sex and higher D-dimer level on ICU admission. Among the 2809 patients included in the target trial emulation, 384 (11.9%) received early therapeutic anticoagulation. In the primary analysis, during a median follow-up of 27 days, patients who received early therapeutic anticoagulation had a similar risk for death as those who did not (hazard ratio, 1.12 [95% CI, 0.92 to 1.35]). LIMITATION: Observational design. CONCLUSION: Among critically ill adults with COVID-19, early therapeutic anticoagulation did not affect survival in the target trial emulation. PRIMARY FUNDING SOURCE: None.


Subject(s)
Anticoagulants/administration & dosage , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , COVID-19/complications , Aged , Anticoagulants/adverse effects , Blood Coagulation Disorders/mortality , COVID-19/mortality , Critical Illness , Female , Hemorrhage/chemically induced , Hemorrhage/mortality , Hemorrhage/virology , Humans , Intensive Care Units , Male , Middle Aged , SARS-CoV-2 , Survival Rate , United States/epidemiology , Venous Thromboembolism/drug therapy , Venous Thromboembolism/mortality , Venous Thromboembolism/virology
12.
JAMA Intern Med ; 180(11): 1436-1447, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-966903

ABSTRACT

Importance: The US is currently an epicenter of the coronavirus disease 2019 (COVID-19) pandemic, yet few national data are available on patient characteristics, treatment, and outcomes of critical illness from COVID-19. Objectives: To assess factors associated with death and to examine interhospital variation in treatment and outcomes for patients with COVID-19. Design, Setting, and Participants: This multicenter cohort study assessed 2215 adults with laboratory-confirmed COVID-19 who were admitted to intensive care units (ICUs) at 65 hospitals across the US from March 4 to April 4, 2020. Exposures: Patient-level data, including demographics, comorbidities, and organ dysfunction, and hospital characteristics, including number of ICU beds. Main Outcomes and Measures: The primary outcome was 28-day in-hospital mortality. Multilevel logistic regression was used to evaluate factors associated with death and to examine interhospital variation in treatment and outcomes. Results: A total of 2215 patients (mean [SD] age, 60.5 [14.5] years; 1436 [64.8%] male; 1738 [78.5%] with at least 1 chronic comorbidity) were included in the study. At 28 days after ICU admission, 784 patients (35.4%) had died, 824 (37.2%) were discharged, and 607 (27.4%) remained hospitalized. At the end of study follow-up (median, 16 days; interquartile range, 8-28 days), 875 patients (39.5%) had died, 1203 (54.3%) were discharged, and 137 (6.2%) remained hospitalized. Factors independently associated with death included older age (≥80 vs <40 years of age: odds ratio [OR], 11.15; 95% CI, 6.19-20.06), male sex (OR, 1.50; 95% CI, 1.19-1.90), higher body mass index (≥40 vs <25: OR, 1.51; 95% CI, 1.01-2.25), coronary artery disease (OR, 1.47; 95% CI, 1.07-2.02), active cancer (OR, 2.15; 95% CI, 1.35-3.43), and the presence of hypoxemia (Pao2:Fio2<100 vs ≥300 mm Hg: OR, 2.94; 95% CI, 2.11-4.08), liver dysfunction (liver Sequential Organ Failure Assessment score of 2-4 vs 0: OR, 2.61; 95% CI, 1.30-5.25), and kidney dysfunction (renal Sequential Organ Failure Assessment score of 4 vs 0: OR, 2.43; 95% CI, 1.46-4.05) at ICU admission. Patients admitted to hospitals with fewer ICU beds had a higher risk of death (<50 vs ≥100 ICU beds: OR, 3.28; 95% CI, 2.16-4.99). Hospitals varied considerably in the risk-adjusted proportion of patients who died (range, 6.6%-80.8%) and in the percentage of patients who received hydroxychloroquine, tocilizumab, and other treatments and supportive therapies. Conclusions and Relevance: This study identified demographic, clinical, and hospital-level risk factors that may be associated with death in critically ill patients with COVID-19 and can facilitate the identification of medications and supportive therapies to improve outcomes.


Subject(s)
COVID-19/mortality , Critical Illness/mortality , Intensive Care Units , Adult , Age Factors , Aged , Aged, 80 and over , Critical Illness/therapy , Female , Hospital Mortality , Humans , Male , Middle Aged , Pandemics , Risk Factors , United States
13.
J Am Soc Nephrol ; 32(1): 161-176, 2021 01.
Article in English | MEDLINE | ID: covidwho-966902

ABSTRACT

BACKGROUND: AKI is a common sequela of coronavirus disease 2019 (COVID-19). However, few studies have focused on AKI treated with RRT (AKI-RRT). METHODS: We conducted a multicenter cohort study of 3099 critically ill adults with COVID-19 admitted to intensive care units (ICUs) at 67 hospitals across the United States. We used multivariable logistic regression to identify patient-and hospital-level risk factors for AKI-RRT and to examine risk factors for 28-day mortality among such patients. RESULTS: A total of 637 of 3099 patients (20.6%) developed AKI-RRT within 14 days of ICU admission, 350 of whom (54.9%) died within 28 days of ICU admission. Patient-level risk factors for AKI-RRT included CKD, men, non-White race, hypertension, diabetes mellitus, higher body mass index, higher d-dimer, and greater severity of hypoxemia on ICU admission. Predictors of 28-day mortality in patients with AKI-RRT were older age, severe oliguria, and admission to a hospital with fewer ICU beds or one with greater regional density of COVID-19. At the end of a median follow-up of 17 days (range, 1-123 days), 403 of the 637 patients (63.3%) with AKI-RRT had died, 216 (33.9%) were discharged, and 18 (2.8%) remained hospitalized. Of the 216 patients discharged, 73 (33.8%) remained RRT dependent at discharge, and 39 (18.1%) remained RRT dependent 60 days after ICU admission. CONCLUSIONS: AKI-RRT is common among critically ill patients with COVID-19 and is associated with a hospital mortality rate of >60%. Among those who survive to discharge, one in three still depends on RRT at discharge, and one in six remains RRT dependent 60 days after ICU admission.


Subject(s)
Acute Kidney Injury/therapy , Acute Kidney Injury/virology , COVID-19/complications , Critical Care , Renal Replacement Therapy , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Incidence , Logistic Models , Male , Middle Aged , Risk Factors , Survival Rate , United States , Young Adult
15.
JAMA Intern Med ; 181(1): 41-51, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-880237

ABSTRACT

Importance: Therapies that improve survival in critically ill patients with coronavirus disease 2019 (COVID-19) are needed. Tocilizumab, a monoclonal antibody against the interleukin 6 receptor, may counteract the inflammatory cytokine release syndrome in patients with severe COVID-19 illness. Objective: To test whether tocilizumab decreases mortality in this population. Design, Setting, and Participants: The data for this study were derived from a multicenter cohort study of 4485 adults with COVID-19 admitted to participating intensive care units (ICUs) at 68 hospitals across the US from March 4 to May 10, 2020. Critically ill adults with COVID-19 were categorized according to whether they received or did not receive tocilizumab in the first 2 days of admission to the ICU. Data were collected retrospectively until June 12, 2020. A Cox regression model with inverse probability weighting was used to adjust for confounding. Exposures: Treatment with tocilizumab in the first 2 days of ICU admission. Main Outcomes and Measures: Time to death, compared via hazard ratios (HRs), and 30-day mortality, compared via risk differences. Results: Among the 3924 patients included in the analysis (2464 male [62.8%]; median age, 62 [interquartile range {IQR}, 52-71] years), 433 (11.0%) received tocilizumab in the first 2 days of ICU admission. Patients treated with tocilizumab were younger (median age, 58 [IQR, 48-65] vs 63 [IQR, 52-72] years) and had a higher prevalence of hypoxemia on ICU admission (205 of 433 [47.3%] vs 1322 of 3491 [37.9%] with mechanical ventilation and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen of <200 mm Hg) than patients not treated with tocilizumab. After applying inverse probability weighting, baseline and severity-of-illness characteristics were well balanced between groups. A total of 1544 patients (39.3%) died, including 125 (28.9%) treated with tocilizumab and 1419 (40.6%) not treated with tocilizumab. In the primary analysis, during a median follow-up of 27 (IQR, 14-37) days, patients treated with tocilizumab had a lower risk of death compared with those not treated with tocilizumab (HR, 0.71; 95% CI, 0.56-0.92). The estimated 30-day mortality was 27.5% (95% CI, 21.2%-33.8%) in the tocilizumab-treated patients and 37.1% (95% CI, 35.5%-38.7%) in the non-tocilizumab-treated patients (risk difference, 9.6%; 95% CI, 3.1%-16.0%). Conclusions and Relevance: Among critically ill patients with COVID-19 in this cohort study, the risk of in-hospital mortality in this study was lower in patients treated with tocilizumab in the first 2 days of ICU admission compared with patients whose treatment did not include early use of tocilizumab. However, the findings may be susceptible to unmeasured confounding, and further research from randomized clinical trials is needed.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Hospital Mortality , Respiratory Insufficiency/therapy , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Anticoagulants/therapeutic use , COVID-19/physiopathology , Cohort Studies , Critical Illness , Early Medical Intervention , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Mortality , Organ Dysfunction Scores , Patient Positioning , Prone Position , Proportional Hazards Models , Receptors, Interleukin-6/antagonists & inhibitors , Respiration, Artificial , Respiratory Insufficiency/physiopathology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL